纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 57-63.doi: 10. 13475/j.fzxb.20200809007
YE Chengwei1, WANG Yi1, XU Lan1,2()
摘要:
为制备具有高比表面积和分级多孔结构的碳材料来提高其用于电极的电荷存储能力,采用静电纺丝技术将钴金属有机骨架材料(ZIF-67)与聚丙烯腈(PAN)/聚甲基丙烯酸甲酯(PMMA)混合制备复合纳米纤维膜,然后对其进行高温炭化处理得到钴基分级多孔复合碳材料,表征了其结构和电化学性能,探究了ZIF-67负载量对复合碳材料结构和性能的影响。结果表明:负载ZIF-67的复合碳材料相对于单一碳材料具有较高的比表面积和丰富的中孔结构,当ZIF-67相对于PMMA的负载量为10%时,复合碳材料比表面积为259.814 m2/g,中孔占比为68.8%,在1 A/g电流密度下的比电容可达151 F/g,是未负载ZIF-67的PAN/PMMA碳材料的3倍,且在2 000次循环后,比电容保持率仍为84.8%。
中图分类号:
[1] | 丰骏, 朱云松, 丁晓峰. 浅析超级电容器的应用及发展趋势[J]. 山东工业技术, 2018(24):176. |
FENG Jun, ZHU Yunsong, DING Xiaofeng. Brief analysis on the application and development trend of the supercapacitor[J]. Journal of Shandong Industrial Technology, 2018(24):176. | |
[2] | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889):651-652. |
[3] |
LI X, CHEN Y, HUANG H, et al. Electrospun carbon based nanostructured electrodes for advanced energy storage: a review[J]. Energy Storage Materials, 2016, 5:58-92.
doi: 10.1016/j.ensm.2016.06.002 |
[4] |
KIM B H, YANG K S. Enhanced electrical capacitance of porous carbon nanofibers derived from polyacry lonitrile and boron trioxide[J]. Electrochimica Acta, 2013, 88(2):597-603.
doi: 10.1016/j.electacta.2012.10.123 |
[5] | CHEN Y, LI X, ZHOU X, et al. Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion induced graphitization as high-performance anode materials[J]. Energy & Environmental Science, 2014, 7(8):2689-2696. |
[6] |
YAN X, TAI Z, CHEN J, et al. Fabrication of carbon nanofiber polyaniline composite flexible paper for super-capacitor[J]. Nanoscale, 2011, 3(1):212-216.
doi: 10.1039/C0NR00470G |
[7] |
LU Y, FU K, ZHANG S, et al. Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capa- citors[J]. Journal of Power Sources, 2015, 273:502-510.
doi: 10.1016/j.jpowsour.2014.09.130 |
[8] | 汪满意, 张晓超, 王燕萍, 等. 聚丙烯腈基中空碳纤维的制备及电化学性能研究[J]. 材料导报, 2014, 28(8):42-45. |
WANG Manyi, ZHANG Xiaochao, WANG Yanping, et al. Study on preparation and electrochemical properties of polypropylene-based hollow carbon fibre[J]. Materials Reports, 2014, 28(8):42-45. | |
[9] |
ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation graph-ene[J]. Science, 2011, 332(6037):1537-1541.
doi: 10.1126/science.1200770 |
[10] |
MAO Y, LI G, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8:14628.
doi: 10.1038/ncomms14628 |
[11] | 苏薇薇, 李英琳, 徐磊. 分级多孔聚丙烯腈/聚甲基丙烯酸甲酯纳米碳纤维的制备及结构研究[J]. 化工新型材料, 2017, 45(12):100-102. |
SU Weiwei, LI Yinglin, XU Lei. Preparation and structural study of the graded porous polyacrylonitrile polymethy lacrylate nano-carbon fiber[J]. New Chemical Materials, 2017, 45(12):100-102. | |
[12] |
WU H B, WEI S, ZHANG L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European Journal, 2013, 19(33):10804-10808.
doi: 10.1002/chem.201301689 |
[13] | GUO J X, GHEN B L, HAO Q, et al. Pod-like structured Co/CoOx nitrogen-doped carbon fibers as efficient oxygen reduction reaction electrocatalysts for Zn-air battery[J]. Applied Surface Science, 2018, 5(21):959-966. |
[14] |
ZHONG M, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen enriched nanocarbons with well defined morphology synthesied by pyrolysis of selfassembled block copolymer[J]. Journal of American Chemical Society, 2012, 134(36):14846-14857.
doi: 10.1021/ja304352n |
[15] |
LAURILA E, THUNBERG J, ARGENT S P, et al. Enhanced synjournal of metal-organic frame-works on the surface of electrospun cellulose nanofibers[J]. Advanced Engineering Materials, 2015, 17(9):1282-1286.
doi: 10.1002/adem.v17.9 |
[1] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[2] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[3] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[4] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[5] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[6] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[7] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[8] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[9] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[10] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[11] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[12] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[13] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[14] | 管斌斌, 李庆, 陈灵辉, 徐宇婷, 樊增禄. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(02): 122-128. |
[15] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
|