纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 57-63.doi: 10. 13475/j.fzxb.20200809007

• 纤维材料 • 上一篇    下一篇

钴基分级多孔复合碳材料的制备及其电化学性能

叶成伟1, 汪屹1, 徐岚1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-08-24 修回日期:2021-04-06 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 徐岚
  • 作者简介:叶成伟(1996—),男,硕士生。主要研究方向为静电纺纳米纤维的制备及其应用。
  • 基金资助:
    国家自然科学基金项目(11672198)

Preparation and electrochemical properties of cobalt-based hierarchical porous composite carbon materials

YE Chengwei1, WANG Yi1, XU Lan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-08-24 Revised:2021-04-06 Published:2021-08-15 Online:2021-08-24
  • Contact: XU Lan

摘要:

为制备具有高比表面积和分级多孔结构的碳材料来提高其用于电极的电荷存储能力,采用静电纺丝技术将钴金属有机骨架材料(ZIF-67)与聚丙烯腈(PAN)/聚甲基丙烯酸甲酯(PMMA)混合制备复合纳米纤维膜,然后对其进行高温炭化处理得到钴基分级多孔复合碳材料,表征了其结构和电化学性能,探究了ZIF-67负载量对复合碳材料结构和性能的影响。结果表明:负载ZIF-67的复合碳材料相对于单一碳材料具有较高的比表面积和丰富的中孔结构,当ZIF-67相对于PMMA的负载量为10%时,复合碳材料比表面积为259.814 m2/g,中孔占比为68.8%,在1 A/g电流密度下的比电容可达151 F/g,是未负载ZIF-67的PAN/PMMA碳材料的3倍,且在2 000次循环后,比电容保持率仍为84.8%。

关键词: 静电纺丝, 金属有机骨架, 分级多孔材料, 电极材料, 比电容, 超级电容器

Abstract:

In this research, carbon materials with high specific surface areas and hierarchical porous structures were prepared to improve the charge storage capacity of the electrode. Electrospinning technology was used to combine the cobalt metal organic framework materials (ZIF-67) with polyacrylonitrile (PAN)/polymethacrylate (PMMA) for fabricating the composite nanofiber membranes. Then the cobalt-based hierarchical porous composite carbon materials were obtained by high-temperature carbonization, and their characterization of structure and electrochemical performance were carried out. The effects of ZIF-67 loading amounts on the structure and performance of the electrode materials were explored. The results showed that the composite carbon materials loaded ZIF-67 had higher specific surface areas and richer mesoporous structures than a single carbon material. When the loading of ZIF-67 relative to PMMA was 10%, the specific surface area was 259.814 m2/g, the proportion of mesopores was 68.8%, and the specific capacitance could reach 151 F/g at a current density of 1 A/g, which was 3 times of the PAN/PMMA carbon material without ZIF-67. Moreover, its specific capacitance retention rate reached 84.8% after 2 000 cycles.

Key words: electrostatic spinning, metal organic framework, hierarchical porous material, electrode material, specific capacitance, supercapacitor

中图分类号: 

  • TS131.9

图1

ZIF-67和Co/CNFs-10样品的微观形貌"

图2

不同ZIF-67负载量的纤维炭化前后的形貌"

表1

Co/CNFs-X复合碳材料的元素相对含量"

样品编号 C N O Co
Co/CNFs-0 82.307 11.305 6.388
Co/CNFs-10 75.908 6.696 9.521 7.878
Co/CNFs-20 68.003 4.325 6.796 20.876
Co/CNFs-30 65.450 0.838 4.756 28.956
Co/CNFs-40 63.570 0.526 3.643 32.261
Co/CNFs-50 60.774 0.345 2.429 36.452

图3

Co/CNFs-X复合碳材料的XRD图"

图4

Co/CNFs-X复合碳材料的N2吸附-脱附等温线"

图5

Co/CNFs-X复合碳材料的孔径分布图"

表2

Co/CNFs-X复合碳材料的孔结构测试结果"

样品
编号
比表面积/
(m2·g-1)
孔容积/(cm3·g-1) 孔占比/%
总孔 微孔 中孔 微孔 中孔
Co/CNFs-0 185.889 0.284 0.119 0.146 41.90 51.40
Co/CNFs-10 259.814 0.183 0.043 0.126 23.49 68.80
Co/CNFs-20 233.830 0.162 0.062 0.091 38.27 56.17
Co/CNFs-30 120.782 0.192 0.042 0.139 21.87 72.39
Co/CNFs-40 75.757 0.158 0.041 0.108 25.95 68.35
Co/CNFs-50 400.270 0.258 0.069 0.176 26.74 68.22

图6

Co/CNFs-X电极材料在 5 mV/s扫描速度下的CV曲线"

图7

Co/CNFs-X电极材料在1 A/g电流密度下的GCD曲线"

图8

Co/CNFs-X电极材料在不同电流密度下的比电容"

图9

1.0 A/g电流密度下Co/CNFs-10电极材料的循环使用曲线"

[1] 丰骏, 朱云松, 丁晓峰. 浅析超级电容器的应用及发展趋势[J]. 山东工业技术, 2018(24):176.
FENG Jun, ZHU Yunsong, DING Xiaofeng. Brief analysis on the application and development trend of the supercapacitor[J]. Journal of Shandong Industrial Technology, 2018(24):176.
[2] MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889):651-652.
[3] LI X, CHEN Y, HUANG H, et al. Electrospun carbon based nanostructured electrodes for advanced energy storage: a review[J]. Energy Storage Materials, 2016, 5:58-92.
doi: 10.1016/j.ensm.2016.06.002
[4] KIM B H, YANG K S. Enhanced electrical capacitance of porous carbon nanofibers derived from polyacry lonitrile and boron trioxide[J]. Electrochimica Acta, 2013, 88(2):597-603.
doi: 10.1016/j.electacta.2012.10.123
[5] CHEN Y, LI X, ZHOU X, et al. Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion induced graphitization as high-performance anode materials[J]. Energy & Environmental Science, 2014, 7(8):2689-2696.
[6] YAN X, TAI Z, CHEN J, et al. Fabrication of carbon nanofiber polyaniline composite flexible paper for super-capacitor[J]. Nanoscale, 2011, 3(1):212-216.
doi: 10.1039/C0NR00470G
[7] LU Y, FU K, ZHANG S, et al. Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capa- citors[J]. Journal of Power Sources, 2015, 273:502-510.
doi: 10.1016/j.jpowsour.2014.09.130
[8] 汪满意, 张晓超, 王燕萍, 等. 聚丙烯腈基中空碳纤维的制备及电化学性能研究[J]. 材料导报, 2014, 28(8):42-45.
WANG Manyi, ZHANG Xiaochao, WANG Yanping, et al. Study on preparation and electrochemical properties of polypropylene-based hollow carbon fibre[J]. Materials Reports, 2014, 28(8):42-45.
[9] ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation graph-ene[J]. Science, 2011, 332(6037):1537-1541.
doi: 10.1126/science.1200770
[10] MAO Y, LI G, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8:14628.
doi: 10.1038/ncomms14628
[11] 苏薇薇, 李英琳, 徐磊. 分级多孔聚丙烯腈/聚甲基丙烯酸甲酯纳米碳纤维的制备及结构研究[J]. 化工新型材料, 2017, 45(12):100-102.
SU Weiwei, LI Yinglin, XU Lei. Preparation and structural study of the graded porous polyacrylonitrile polymethy lacrylate nano-carbon fiber[J]. New Chemical Materials, 2017, 45(12):100-102.
[12] WU H B, WEI S, ZHANG L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European Journal, 2013, 19(33):10804-10808.
doi: 10.1002/chem.201301689
[13] GUO J X, GHEN B L, HAO Q, et al. Pod-like structured Co/CoOx nitrogen-doped carbon fibers as efficient oxygen reduction reaction electrocatalysts for Zn-air battery[J]. Applied Surface Science, 2018, 5(21):959-966.
[14] ZHONG M, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen enriched nanocarbons with well defined morphology synthesied by pyrolysis of selfassembled block copolymer[J]. Journal of American Chemical Society, 2012, 134(36):14846-14857.
doi: 10.1021/ja304352n
[15] LAURILA E, THUNBERG J, ARGENT S P, et al. Enhanced synjournal of metal-organic frame-works on the surface of electrospun cellulose nanofibers[J]. Advanced Engineering Materials, 2015, 17(9):1282-1286.
doi: 10.1002/adem.v17.9
[1] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[2] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[3] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[4] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[5] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[6] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[7] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[8] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[9] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[10] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[11] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[12] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[13] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[14] 管斌斌, 李庆, 陈灵辉, 徐宇婷, 樊增禄. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(02): 122-128.
[15] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!